
J Glob Optim (2010) 48:511–531
DOI 10.1007/s10898-010-9526-8

Optimal placement of UV-based communications
relay nodes

Oleg Burdakov · Patrick Doherty · Kaj Holmberg ·
Per-Magnus Olsson

Received: 6 August 2009 / Accepted: 16 January 2010 / Published online: 13 February 2010
© Springer Science+Business Media, LLC. 2010

Abstract We consider a constrained optimization problem with mixed integer and real
variables. It models optimal placement of communications relay nodes in the presence of
obstacles. This problem is widely encountered, for instance, in robotics, where it is required
to survey some target located in one point and convey the gathered information back to a base
station located in another point. One or more unmanned aerial or ground vehicles (UAVs or
UGVs) can be used for this purpose as communications relays. The decision variables are
the number of unmanned vehicles (UVs) and the UV positions. The objective function is
assumed to access the placement quality. We suggest one instance of such a function which
is more suitable for accessing UAV placement. The constraints are determined by, firstly, a
free line of sight requirement for every consecutive pair in the chain and, secondly, a limited
communication range. Because of these requirements, our constrained optimization problem
is a difficult multi-extremal problem for any fixed number of UVs. Moreover, the feasible set
of real variables is typically disjoint. We present an approach that allows us to efficiently find
a practically acceptable approximation to a global minimum in the problem of optimal place-
ment of communications relay nodes. It is based on a spatial discretization with a subsequent
reduction to a shortest path problem. The case of a restricted number of available UVs is
also considered here. We introduce two label correcting algorithms which are able to take
advantage of using some peculiarities of the resulting restricted shortest path problem. The
algorithms produce a Pareto solution to the two-objective problem of minimizing the path
cost and the number of hops. We justify their correctness. The presented results of numerical
3D experiments show that our algorithms are superior to the conventional Bellman-Ford
algorithm tailored to solving this problem.

O. Burdakov (B) · K. Holmberg
Department of Mathematics, Linköping University, 581 83 Linköping, Sweden
e-mail: olbur@mai.liu.se

P. Doherty · P.-M. Olsson
Department of Computer and Information Science, Linköping University, Linköping, Sweden

123

512 J Glob Optim (2010) 48:511–531

Keywords Unmanned vehicles · Global optimization · Hop-restricted shortest paths ·
Pareto solution · Label correcting algorithms

1 Introduction

In this paper, we consider the following optimization problem originating from optimal
placement of communications relay nodes.

Given a set X ⊂ Rn and two points s and t in X . One must choose an optimal number of
points, say k, in the ordered sequence point 1, point 2, . . ., point k. We consider separately
the two cases: unrestricted and restricted k. The points are to be placed in X in an optimal
way subject to some constraints. The position of point i , denoted as xi , is assessed by a merit
function f (xi), and the sum f (x1) + · · · + f (xk) is to be minimized. The point placement
should meet the following requirements, in which we denote x0 = s and xk+1 = t . Any
consecutive pair (i, i + 1) in the sequence of points should be placed so that all points of the
linear segment

[xi , xi+1] =
{

x ∈ Rn : x = αxi + (1− α)xi+1, α ∈ [0, 1]}

belong to the set X . Moreover, it is required that the Euclidean distance ‖xi+1 − xi‖ does
not exceed a given radius r > 0.

The described optimization problem can be formulated as follows.

min
k∈{0,1,2,...} F(k), (1)

where the objective function

F(k) = min
x1,...,xk∈Rn

k∑

i=1
f (xi)

subject to: [xi , xi+1] ⊂ X, i = 0, 1, . . . , k,

‖xi+1 − xi‖ ≤ r, i = 0, 1, . . . , k,

x0 = s, xk+1 = t.

(2)

Our interest in this problem is motivated by the communications relay problems common,
for instance, in robotics [2–4,16,17,19,21,27,30–32,34], where it is required to survey some
target located in t and convey the gathered information back to a base station located in s.
One or more unmanned aerial or ground vehicles (UAVs or UGVs) are used as relays. The set
X is defined by the terrain within the area of interest. In the case of UAVs, it is typically the
area of interest with removed obstacles which could be, e.g., buildings, hills or mountains.
In Fig. 1, X is the white area. It is assumed that the available unmanned vehicles (UVs) are
equipped with appropriate sensors to survey the target and also with means to communicate
with each other and the base station. We consider here the case when UVs form a chain over
which the communication is relayed.

The optimal number of UVs, k, and their optimal positions, x1, . . . , xk , are to be deter-
mined subject to constraints of the following two types.

First, the communication between any consecutive pair of UVs in the chain can only take
place if there is a free line of sight between them (see Fig. 1). This requirement is modeled
in (2) as [xi , xi+1] ⊂ X .

Second, in any consecutive pair, the UVs are not further away from each other than the
range of the communication equipment which is characterized by the communication radius
r > 0. As the range of the equipment is limited, it forces the use of intermediary relay UVs

123

J Glob Optim (2010) 48:511–531 513

Fig. 1 Communications relay

to convey the information back to the base station if the distance between the target and the
base station is longer than the communication range. It is assumed, for simplicity, that the
range of the base station communications equipment is the same as the UAV communication
range. The second requirement justifies the presence of the inequality ‖xi+1− xi‖ ≤ r in (2).

The function f (xi) assessing the UV position xi can be defined in various ways. In Sect. 2,
we suggest to use an obstructed volume as a merit function, whose value is determined by
the local terrain around xi . This is just an example, and it is the merit function which was
used in our numerical experiments. In Sect. 7, we consider alternative forms of the objective
function in (2).

Mixed integer programming problems, like (1–2), are known to be very difficult to solve
[8,25]. In our case, the difficulties originate not only from the presence of an integer variable,
but mainly because of the multi-extremal nature of the continuous optimization sub-problem
(2). Moreover, the feasible set in (2) is typically disjoint, in which case there exists at least
one couple of feasible points x = (x1, . . . , xk) and x ′ = (x ′1, . . . , x ′k) in the kn-dimen-
sional space Rn × · · · × Rn such that any continuous path between them contains infeasible
points. The number of disjoint subsets of the feasible set is in practice extremely large, and
in theory, it may grow exponentially with the number of obstacles. This feature is illustrated
in Fig. 1. One can see that there is no feasible continuous variation of variables that would
be able to transform the feasible sequence of points x = (x1, . . . , x4) to x ′ = (x ′1, . . . , x ′4).
In this example, there exist a large number of feasible sequences x = (x1, . . . , x4) which are
pair-wise disjoint in this sense.

The aim of this paper is to develop an approach that would allow us to efficiently find a
reasonably accurate approximation to a global minimum in the problem of optimal placement
of communications relay nodes. Some practical aspects of using this approach for positioning
UAVs as communication relays for surveillance tasks are discussed in [11].

The main practical significance of our approach is that it allows for finding such a place-
ment in real time mode almost immediately after the target position becomes available. This
is achieved by splitting the solution process into the following two stages.

At the presolving stage, an a priori available information about the terrain and the location
of the base station is processed as completely as possible. Thus, the major computational
efforts are associated with this stage. This makes vanishing the computational cost of the
second stage, at which the information about the target position is used.

123

514 J Glob Optim (2010) 48:511–531

Our approach is based on a discretization of the set X and a reformulation of our problem
as a shortest path problem (see, e.g., [1]) which is known to be solved in a polynomial time
of the number of discretization nodes. To avoid confusion, we shall call it a cheapest path
problem, because both path cost and its length (number of hops) will be considered. We intro-
duce a spatial discretization and present a network formulation in Sect. 3. The discretization
as well as the network problem generation and its solving for every possible discrete target
position can all be done at the presolving stage.

We should emphasize the distinction between our problem and the vehicle path planning
problems [13,24] because one can find some similarities between them. The optimal solution
to problem (1–2) can be viewed as a piecewise linear path from s to t . Optimal paths are
of the same shape in some vehicle path planning problems, for instance, in the Euclidean
shortest path problem in polyhedral environment. The principle difference is that the optimal
solution to (1–2) has a finite number of jog points. This number remains bounded from above
by a constant with refining the discretization in X , where the constant is related to the optimal
k in (1). By contrast, the number of jog points in Euclidean shortest paths tends to infinity
when the polyhedral approximation of obstacles is successively refined. Moreover, these jog
points belong to the edges of the polyhedra, while in our problem, the jog points located too
close to obstacles are not of preferable choice for placing UAVs.

In practice, the number of communications relay nodes to be optimally placed is often
restricted by some number K > 0. This requirement leads to the following reformulation of
problem (1)

min
k∈{0,1,...,K } F(k). (3)

In our network formulation considered in Sect. 4, this problem corresponds to a cheapest
path problem with restricted number of hops. In practice, it may be necessary to solve this
problem repeatedly for every new target position and number of available UVs. Therefore,
in Sect. 4, we address also the more general problem of finding optimal placement of a
limited number of communications relay nodes for every possible discrete target position.
It is reduced to the all hops optimal path (AHOP) problem [23]. The consideration of this
more general problem allows us to move the major computational burden on the mentioned
presolving stage.

The conventional Bellman-Ford algorithm is widely used for finding a tree of unrestricted
cheapest paths. It has been noticed, e.g., in [1,25] that the labels generated by this algorithm
contain all AHOP solutions. In Sect. 5, we present the Bellman-Ford algorithm tailored in
[25] to solving AHOP problems. We then introduce two new and considerably more efficient
label correcting algorithms for solving the same problems and prove their correctness. They
can be viewed as modifications of the algorithm of [25]. Their efficiency results from using
some peculiarities of the UV-based communications relay problem. The important feature
of these algorithms is that for each possible target position they produce a Pareto solution. It
is an optimal solution to the multi-criteria problem of minimizing both the path cost and the
number of hops. We are interested in minimizing the number of hops because this minimizes
the number of UVs required for maintaining the communications relay.

Results of our numerical experiments are presented in Sect. 6. The considered test prob-
lems originate from UAV applications with various 3D terrain topologies. The number of
discretization points varies from medium to very large. The experiments show that our algo-
rithms are superior to the Bellman-Ford-type algorithm of [25].

In Sect. 7, we draw conclusions and discuss future work.

123

J Glob Optim (2010) 48:511–531 515

Fig. 2 The 500-gram linkMAV micro aerial vehicle

2 Use of obstructed volume for assessing UAV position

In the applications that the authors are dealing with, UAVs are used as communication relays.
Some of them are very light, like the one in Fig. 2. It is important to position the UAVs safely
far away from obstacles for many reasons. For instance, the positions of UAVs may be affected
by strong winds or by a necessity to make limited moves caused by limited purposeful moves
of the surveying UAV. In all these cases, uninterrupted communication should be maintained.
This requires a sufficiently large free-of-obstacles room around each of the UAVs. In a sense,
this means that the UAVs should be better centered with respect to the surrounding obstacles.
Moreover, the better centered positions are often related to the better communication quality.
The same position property is important for the surveying UAV also because the target is
typically not located in the corresponding grid point.

In the line of this, we suggest to define the function f (xi) assessing the UAV position xi , for
example, as the volume of obstacles and their ‘shade’ within the ball {x ∈ R3 : ‖x−xi‖ ≤ r ′}.
Here the radius r ′ may be either the same as, or different from, the communication radius r .
In other words, f (xi) is the volume of the part of the ball which is invisible from the point
xi (see Fig. 3). Obviously, f (xi) = 0 means that there is no obstructed volume within the
ball, and the maximal value of f (xi) is equal to the volume of the ball. Our desire to find
a UAV location xi , which makes the obstructed volume f (xi) as small as possible, implies
maximization of the visible volume of the sphere.

Our choice of f (xi) is closely related to the concept of an isovist introduced in [39]. An
isovist, or viewshed, is the area in a spatial environment directly visible from a given point. In
our applications this area is restricted by a ball. Isovist is widely used in architectural studies,
geoinformation science, computational geometry and computer graphics. It is successfully
applied in the problems of line of sight communication, VLSI circuits design, robot and
sensor network design, motion planning, architectural and urban planning, computer games
etc. Since some of them admit problem formulations similar to (1–2), they can be viewed as
potential areas for extending the approach presented in this paper.

123

516 J Glob Optim (2010) 48:511–531

Fig. 3 Visible and invisible parts of a ball centered in xi

Fig. 4 Obstructed volume for three UAV positions

There exist efficient algorithms that can be used in our applications for computing the
obstructed volume f (xi) (see, e.g., [7,15,28,36,40]).

With our suggested choice of f (xi), positions xi well distant from obstacles are favored
over those which are closer to obstacles. This ensures that the better centered points are of
preferable choice for placing UAVs. Figure 4 presents an example in which f (xi) > f (x ′i) >

f (x ′′i), and therefore, the position x ′′i is the most preferable among the considered three alter-
natives. In what follows, we do not use any specific feature of f (xi) and assume that it is just
a given function.

3 Spatial discretization and network formulation

For the purpose of solving problem (1–2) approximately, let us restrict our choice of placing
x1, . . . , xk by a discrete set of points D ⊂ Rn . This can be done, for instance, by introducing
a grid in the area of interest. Then the minimization in (2) is performed over x1, . . . , xk ∈ D.

The introduced discretization, in itself, does not make any considerable simplification of
problem (1–2). Since it still looks intractable, we will construct a network by taking advan-
tage of using such characteristic features of problem (2) as the additive objective function

123

J Glob Optim (2010) 48:511–531 517

and chain-type constraints. Our network, i.e. a weighted directed graph, will be constructed
on the base of an undirected graph.

To formalize our network problem, let us regard the discrete points D ∩ X as nodes. We
denote the set of nodes by N . For simplicity, the same notation will sometimes be used for
both points and nodes.

Let the set E ⊂ N × N be composed of the couples x ′, x ′′ ∈ D ∩ X which both are
intervisible, i.e. [x ′, x ′′] ⊂ X , and meet the limited distance requirement ‖x ′ − x ′′‖ ≤ r . The
set of nodes N and the set of undirected edges E define the visibility graph G = (N , E) (see
Fig. 5).

Using the available visibility graph G, one can easily answer the practical question about
the minimal number of UVs required to establish a relay-type communication link between
the base and the terminal UV for the given target location. The breadth-first search [14] is
ideally suited for this purpose, because its computational complexity grows linearly with the
number of edges.

Visibility graphs are widely used in the areas listed in Sect. 1 in connection with the notion
of isovist and viewshed. For constructing visibility graphs, there exist not only efficient com-
putational algorithms [7,15,22,28,36,40] and software [29], but also hardware accelerators
[35].

Note that the number of uniformly distributed grid points, which are within the distance r ′
from xi and invisible for xi , is proportional to the obstructed volume. Therefore, this number
can be used instead of the obstructed volume to define f (xi). It can be calculated for a given
visibility graph G by subtracting the corresponding node degree, i.e. the number of nodes
adjacent to xi , from the maximum possible number of grid points in a sphere of the radius
r ′. This way of defining f (xi) can be extended to the case of nonuniformly distributed grid
points.

Assuming that s, t ∈ N , the optimal placing of communications relay nodes is then
reduced to finding in this graph a path between the nodes s and t which minimizes the sum
f (x1)+ · · · + f (xk). Notice that each term in this objective function is associated with the
corresponding node. Since this observation does not allow us yet to apply directly any of the

Fig. 5 Spatial discretization (the set D ∩ X is presented by the dots ◦ and •). The points x ′ and x ′′ are
intervisible and meet the limited distance requirement. Nodes • are adjacent to x ′ in the visibility graph

123

518 J Glob Optim (2010) 48:511–531

conventional network optimization methods [1,9] to solving this problem, we will introduce
directed edges and define their costs.

We suggest to change from the undirected graph G to a directed one Ḡ as follows. The
set of nodes N remains the same. Any undirected edge (i, j) ∈ E is substituted by the two
directed edges (i, j) and (j, i). The resulting set of edges is denoted by Ē . Thus, the directed
graph is defined as Ḡ = (N , Ē).

Let x(j) denote the point position associated with the node j ∈ N . Then we assign the
cost ci j = f (x(j)) to each edge (i, j) ∈ Ē as indicated in Fig. 6. The introduced edge costs
accomplish our definition of the network with the two selected nodes s and t .

If (i, j)∈ Ē , then by the construction of the visibility graph, it is guaranteed that
[x(i), x(j)] ⊂ X and ‖x(i) − x(j)‖ ≤ r . Thus, any feasible placement of communica-
tions relay nodes in D composes a path from the node s to the node t , say

s → i → j → · · · → k → t.

Such placement is characterized by both the path length equal to the number of edges (hops)
in the path, and the path cost equal to

csi + ci j + · · · + ckt = f (x(i))+ f (x(j))+ · · · + f (x(k))+ f (t),

where the term f (t) does not depend on the placement. This allows us to formulate the
problem of optimal placement of communications relay nodes as the problem of finding a
cheapest path from the node s to the node t .

For the alternative reduction of the problem of optimal placement of communications relay
nodes to the equivalent cheapest path problem, we can suggest to consider the undirected
graph G with the edge cost defined as ci j = f (x(i))+ f (x(j)). In this paper, we focus on
our reduction to the directed graph Ḡ = (N , Ē) which has the useful property that the costs
of all incoming edges are the same for each node.

If the node outdegree is used instead of the obstructed volume, the problem is equivalent
to finding a path from s to t with maximal total outdegree of nodes in the path.

It is intuitively clear that in the practically important cases it is natural to expect that the
discrete cheapest path solution converges to the global solution to problem (1–2) when the
discretization is properly refined. In this paper, we do not study this convergence.

There exist efficient algorithms for solving the cheapest path problem (see e.g. [1,9,12,
14]). In our notations, the computational complexity of the best of the known practical cheap-
est path algorithms is of O(|Ē |+|N | log |N |), where |A| denotes the cardinality of the set A.

It is of practical significance in the UV-based communications relay problem to solve
the corresponding cheapest path problem, as quickly as possible, after the target location
becomes available. Such problems may arise repeatedly for the same terrain and the same
location of the base station, but for different target locations. We make the desired quick
solving achievable by presolving the problem in advance. For this purpose, we take into
account as much of the a priori available information as possible.

At the presolving stage, we suggest to discretize the area of interest, construct the visibil-
ity graph, and then solve the resulting single-source cheapest path problem [1,9,14], whose

Fig. 6 Transition from the undirected graph G to the weighted directed graph Ḡ

123

J Glob Optim (2010) 48:511–531 519

solution is a tree of cheapest paths from s to each node in N . The cheapest path tree com-
poses a special kind of communication map which for each node contains the location of its
immediate predecessor in a cheapest path from s to this node.

At the stage when the location of the target becomes available, an optimal placement
of relay nodes can be very quickly retrieved from the communication map. The number
of required arithmetic operations is proportional to the optimal number of relay nodes. It
is vanishing in comparison with O(|Ē | + |N | log |N |), the best known complexity of the
algorithms that can be used at the presolving stage.

4 Restricted number of relay nodes

In this section, we consider problem (2–3) assuming that the maximal number of relay nodes
K is given. After generating the network as described in Sect. 3, this problem is reduced to
the cheapest path problem with a restricted number of nodes in path, or equivalently, with a
restricted number of edges (hops). In the latter problem, K + 1 is the maximal number of
edges in the optimal path to be found.

In relation to the hop-restricted cheapest path problem, we should mention here the weight-
restricted cheapest path problem [18], which can be formulated as follows. Given a directed
graph with edge costs ci j , edge weights wi j and the upper limit K for the path weight, find
a cheapest path from s to t whose weight does not exceed K . It is known to be an NP-hard
problem, however it can be solved in pseudopolynomial time. In [18], one can find an over-
view of the existing algorithms. Our hop-restricted cheapest path problem is a special case
in which wi j = 1 for all edges, and it can be solved in polynomial time.

We call a path k-restricted if it consists of at most k edges. We will consider here the
AHOP problem [23]. It consists in finding a k-restricted cheapest path from a selected node
s to all j ∈ N for each k = 1, 2, Note that in the mentioned hop-restricted cheapest path
problem the value of k is fixed. The reasoning in this section does not take into account any
information about the UV origination of the graph Ḡ = (N , Ē). The only assumption is that
Ḡ has no cycle of negative cost.

Let d(j) stand for the depth of node j with respect to node s, i.e. d(j) is the minimal num-
ber of edges over all paths from s to j . If there is no path from s to j , we define d(j) = ∞.
We denote the maximal depth over all j ∈ N reachable from s by

kmax = max{d(j) : j ∈ N , d(j) <∞}.
The value kmax − 1 can be interpreted as the minimal number of UVs which would be def-
initely sufficient to survey a target at any discrete position, not necessarily in the optimal
way.

The notation d∗(j) will be used for the minimal number of edges (hops) over all cheapest
paths from s to j . We call a cheapest path tree least-hops if, for each j ∈ N , the length of
the path in this tree from s to each j is minimal, i.e. it is equal to d∗(j). Let k∗max denote the
height of a least-hops cheapest path tree, which means that

k∗max = max{d∗(j) : j ∈ N , d∗(j) <∞}.
The value k∗max−1 can be interpreted as the minimal number of UVs sufficient for the optimal
surveillance of a target at any discrete position.

Since the set of cheapest paths is a subset of all paths, we have

d(j) ≤ d∗(j), ∀ j ∈ N ,

123

520 J Glob Optim (2010) 48:511–531

and kmax ≤ k∗max.
We say that an AHOP problem admits a trivial solution if

d(j) = d∗(j), ∀ j ∈ N .

Then kmax = k∗max. In our UV applications, this case means that, for each target position,
there exists an optimal placement of the relay nodes with the minimum possible number
of UVs. In [10], we present a sufficient condition for the AHOP problem to admit a trivial
solution. This condition is formulated in terms of the edge costs ci j .

The notations g∗k (j) and g∗(j) will be used for the cost of, respectively, a k-restricted and
standard (unrestricted) cheapest path from s to j . If 0 ≤ k < d(j), there is no k-restricted
path from s to j , and in this case we define g∗k (j) = +∞.

Obviously,

g∗0(j) ≥ g∗1(j) ≥ · · · ≥ g∗k (j) ≥ g∗k+1(j) ≥ · · · (4)

Moreover, g∗k (j) ≥ g∗(j) for all k ≥ 0. More detailed relations between g∗k (j) and g∗(j)
are presented below by Lemma 1.

Let

j− = {i ∈ N : (i, j) ∈ Ē}, j+ = {i ∈ N : (j, i) ∈ Ē}
denote the sets of all immediate predecessors and successors of node j ∈ N , respectively. In
this notation, the optimality conditions for the AHOP problem can be written (see, e.g. [25])
in the form of the recursion relation

g∗k (j) = min

{
g∗k−1(j), min

i∈ j−
{g∗k−1(i)+ ci j }

}
(5)

valid for any j ∈ N and k ≥ 0. It can be viewed as a Bellman-type recurrence equation
[1,6,9,20].

The optimality conditions allows us to formulate the following lemma. It will be used for
proving the correctness of the algorithms presented in the next section.

Lemma 1 Let a weighted directed graph Ḡ = (N , Ē) with source s contain no negative
cycles. Then the optimal solution to the AHOP problem has the following structure.

(a) If, for some i, j ∈ N and k such that (i, j) ∈ Ē and 2 ≤ k ≤ k∗max, the relations
g∗k−2(i) = g∗k−1(i) and g∗k−1(j) > g∗k (j) hold, then g∗k−1(i)+ ci j > g∗k (j).

(b) g∗k (j) > g∗(j) iff k < d∗(j).
(c) g∗k (j) = g∗(j) iff k ≥ d∗(j).

Proof By optimality conditions (5) and the assumptions in (a), we obtain the relations

g∗k (j) < g∗k−1(j) ≤ g∗k−2(i)+ ci j = g∗k−1(i)+ ci j ,

which prove statement (a).
Statements (b) and (c) simply follow from the fact that d∗(j) is the minimal number of

edges for all unrestricted cheapest paths from s to j , and g∗(j) is the cost of such paths.
Indeed, if the number of edges in a path is less than d∗(j), the path cost must be larger
than g∗(j). Moreover, it is obvious that for k ≥ d∗(j) there is no k-restricted path which is
cheaper than g∗(j), while there exists a path of the cost g∗(j) and the length d∗(j). ��

123

J Glob Optim (2010) 48:511–531 521

If an AHOP problem admits a trivial solution, then for all j ∈ N and k ≥ 0, by Lemma 1,
we have

gk(j) =
{+∞, if 0 ≤ k < d∗(j)

g∗(j), if k ≥ d∗(j)
.

5 AHOP algorithms

The following successive approximation algorithm introduced by Lawler [25] is based
on the recursion relation (5), and it extracts the AHOP solutions from the labels generated
by the conventional Bellman-Ford algorithm.

Algorithm 1.
1 for each i ∈ N \ {s} do
2 g0(i)←+∞
3 g0(s)← 0
4 for k = 1, 2, . . . , |N | − 1 do
5 for each j ∈ N do
6 gk(j)← gk−1(j)
7 for each i ∈ N do
8 for each j ∈ i+ do
9 if gk−1(i)+ ci j < gk(j) then
10 gk(j)← gk−1(i)+ ci j

At iteration k, Algorithm 1 produces implicitly, for each node j ∈ N , a k-restricted path
from s to j of the cost gk(j), which is an upper estimate for g∗k (j). Whenever the label gk(j)
is improved, the path is updated. At the end of the k-th iteration, the algorithm generates

gk(j) = g∗k (j), ∀ j ∈ N . (6)

This statement is justified, e.g., in [1, p. 142].
We introduce here two modifications of Algorithm 1 which are able to take advantage

of using some characteristic features of the AHOP problems originating from our UV-based
applications. The modifications are built upon the properties of the optimal AHOP solutions
presented by Lemma 1.

The computational complexity of Algorithm 1 is O(|N | |Ē |) (see e.g. [1]). This estimate
is justified by the necessity of performing |N | − 1 iterations of the for loop in lines 4–10,
which contains the for loop in lines 7–10 to be performed for all edges.

We observe that iteration k = k∗max results in gk(j) = g∗(j) for all j ∈ N . This means
that gk(j) has attained its minimal value and would not change at the subsequent iterations.
Therefore, Algorithm 1 can be terminated after this iteration.

Clearly k∗max < |N |. It should be emphasized that, in the practical placement of communi-
cations relay nodes, the value of k∗max mostly depends on the terrain topology. For given area
of interest, k∗max does not change much with the increasing number of discrete points |N |, if
it changes at all. It is natural to expect for properly refining discretization that k∗max− 1 tends
to the maximal value of k(t) over all possible continuous target positions t , where k(t) is an
optimal solution to problem (1–2). In other words, k∗max tends to the minimal number of UVs
which would be definitely sufficient for the optimal surveillance of a target at any position.
For our applications, it is typical that

k∗max << |N |. (7)

123

522 J Glob Optim (2010) 48:511–531

This observation is taken into account in Algorithm 2 (presented below), which can be viewed
as a modification of Algorithm 1.

Another observation is based on Lemma 1a). It states that if gk−1(i) did not change at
iteration k − 1, then gk−1(i)+ ci j is not able to improve the value of gk(j), i.e. in this case,
line 10 of Algorithm 1 is not performed for node i at iteration k. Therefore, the for loop
in lines 8–10 can be restricted to only those edges (i, j) ∈ Ē which begin in nodes i that
compose the set

Vk = {i ∈ N : gk−1(i) �= gk−2(i)}.
Algorithm 2 gains the most benefit from using this observation.

In Algorithm 2, the label g(j) takes the same values at iteration k as gk(j) in Algorithm 1.
If g(j) changes at the k-th iteration, we set gk(j) ← g(j), and if not, no label gk(j) is
assigned to node j at iteration k.

Algorithm 2 has an extra feature. At iteration k, it produces for each node j ∈ N its
immediate predecessor p(j) in the k-restricted path from s to j . The cost of this path g(j)
gives an upper estimate for g∗k (j). At the end of the k-th iteration of Algorithm 2, the equality

g(j) = g∗k (j), ∀ j ∈ N (8)

similar to (6) holds, and p(j) is the immediate predecessor of node j in the implicitly
produced k-restricted cheapest path from s to j . The cost of this path is equal to g∗k (j).
It will be explained below how to retrieve this path from the available list of predecessors
p1(·), . . . , pk(·). The mentioned feature was not introduced in Algorithm 1, because we wish
to simplify its formal presentation and to focus on its modifications.

As a result of the k-th iteration of Algorithm 2, the set Vk+1 is composed of those nodes
j ∈ N for which a cheaper path from s to j has been found at this iteration, i.e. g∗k (j) <

g∗k−1(j). Only these nodes are used at the next iteration to possibly improve the value of
gk+1 for their immediate successors. This allows Algorithm 2 to reduce in practice the total
number of elementary operations, although the worst-case estimate remains the same as for
Algorithm 1, namely, O(|N | |Ē |).

The outlined algorithm can be formally presented as follows.

Algorithm 2.
1 for each i ∈ N \ {s} do
2 g(i)←+∞
3 g(s)← 0, g0(s)← g(s), p0(s)← nil, V1 ← {s}
4 for k = 1, 2, . . . while |Vk | �= 0 do
5 Vk+1 ← ∅
6 for each i ∈ Vk do
7 for each j ∈ i+ do
8 if gk−1(i)+ ci j < g(j) then
9 g(j)← gk−1(i)+ ci j , p(j)← i , Vk+1 ← Vk+1 ∪ { j}
10 for each j ∈ Vk+1 do
11 gk(j)← g(j), pk(j)← p(j)

Algorithm 2 returns a collection of triples {k, gk(j), pk(j)} produced for each node j ∈ N .
We call them kgp-triples. The output of Algorithm 2 for node j may not contain kgp-triples
for some values of k. In fact, in our applications, such collections are typically very sparse—
just one or a few kgp-triples per one node. Recall that, in (4), the sequence of non-increasing
values of g∗k (j) may remain the same for some number of the consecutive values of k.

123

J Glob Optim (2010) 48:511–531 523

The kgp-triples are produced by Algorithm 2 only for those values of k which are minimal in
such series of equal values of g∗k (j). Therefore, in order to find the value of a, possibly, miss-
ing triple {k, gk(j), pk(j)}, it is necessary to find the largest k′ ≤ k for which a kgp-triple
{k′, gk′(j), pk′(j)} exists. Then the desired values are gk(j) = gk′(j) and pk(j) = pk′(j).
If such k′ does not exist, then gk(j) = +∞ and pk(j) = nil. A k-restricted cheapest path
from s to j can be retrieved from the available kgp-triples as follows. We set jk′ = j , and
then recursively find

jk′−1 = pk′(jk′), jk′−2 = pk′−1(jk′−1), . . . , j0 = p1(j1), (9)

where j0 = s.
The main properties of Algorithm 2 are summarized in the following theorem.

Theorem 2 Let Algorithm 2 be run on a weighted directed graph Ḡ = (N , Ē) with source s.
Assume that this graph contains no negative cycles. Then after k iterations of the for loop in
lines 4–11, Eq. 8 holds. Moreover, the generated kgp-triples correctly define, for each node
j ∈ N, a path of the optimal cost g∗k (j). The length of this path is minimal over all cheapest
k-restricted paths from s to j , if such paths exist, and it is equal to the largest k′ ≤ k for
which a triple {k′, gk′(j), pk′(j)} exists. Algorithm 2 terminates in k = k∗max + 1 iterations.

Proof Denote V ∗1 = {s} and

V ∗k = {i ∈ N : g∗k−1(i) �= g∗k−2(i)} (10)

for k ≥ 2. By Lemma 1, the optimality conditions (5) can be written as

g∗k (j) = min

{

g∗k−1(j), min
i∈ j−∩V ∗k

{g∗k−1(i)+ ci j }
}

. (11)

Then it can be easily shown, by induction in k = 1, 2, . . . , k∗max, that after iteration k, Eq. 8
holds and Vk = V ∗k . By the definition of k∗max, V ∗k �= ∅ for these values of k. Therefore,
Algorithm 2 can not terminate before iteration k = k∗max + 1. By Lemma 1 and Eq. 8, at the
end of iteration k = k∗max we have

g(j) = g∗(j), ∀ j ∈ N .

At the next iteration, none of these values of g(j) can be decreased. Therefore, Vk∗max+2 = ∅
and Algorithm 2 terminates after iteration k = k∗max + 1.

By the assumption of the theorem, a triple

{k′, gk′(jk′), pk′(jk′)}
was generated by Algorithm 2 for jk′ = j . Then pk′(jk′) ∈ V ∗k′ . This, by definition (10),
ensures that the triple

{k′ − 1, gk′−1(pk′(jk′)), pk′−1(pk(jk′))}
exists. By reasoning recursively in the same way, we can prove the correctness of the recur-
sive procedure defined by (9). Since V ∗1 = {s}, we have j0 = s. Thus, (9) defines a path from
s to j with the path cost g∗k (j). Then it can be easily shown, by induction in k, that the length
of this path is minimal over all cheapest k-restricted paths from s to j . ��

Consider the two-criteria optimization problem in which both the path cost and its length
(the number of hops) are to be minimized for each node. Theorem 2 implies that Algorithm 2

123

524 J Glob Optim (2010) 48:511–531

generates a Pareto optimal solution to this problem. Algorithm 1 could also produce a Pareto
optimal solution if to modify it properly.

Observe that the major computational burden of Algorithms 1 and 2 is associated with the
execution of lines 9–10 and 8–9, respectively.

In Algorithm 1, lines 9–10 are executed approximately |Ē | |N | times, because each edge
(i, j) is used only once for each k.

Similar calculations show that lines 8–9 of Algorithm 2 are executed at most k∗max|Ē |
times. In the problems for which (7) holds, this very rough estimate is much better than
|N | |Ē |. To continue with a more refined analysis of the computational burden, we denote:

Ēk = {(i, j) ∈ Ē : i ∈ Vk, j ∈ i+},
|Ēmax| = max{|Ēk | : 1 ≤ k ≤ k∗max}.

Then it is not difficult to verify that the number of elementary operations of Algorithm 2
grows in proportion to the value

k∗max∑

k=1

|Ēk |.

Since this estimate is bounded above by k∗max|Ēmax|, it is typically well below k∗max|Ē | for
our applied problems, in which |Ēk | is far less than |Ē |.

Our further progress in reducing the number of elementary operations is related with the
use of the cheapest path tree. If the edge costs are non-negative, this tree can be produced,
for instance, by Dijkstra’s algorithm. Its computational complexity is O(|Ē | + |N | log |N |).
We need the cheapest path tree to possess the least-hops property. This extra property can be
assured by a simple modification of the algorithms producing cheapest path trees. For this
purpose, not only a path cost should be associated with each node, but also the length of this
path. The currently best path can be improved not only when a candidate path has a smaller
cost, but also when its length is smaller while the cost is the same as the currently best one
(for the formal presentation of this modification, see [10]).

Let p∗(j) denote the immediate predecessor of node j ∈ N in a given least-hops cheapest
path tree. Hereafter we assume that such a tree is available. More specifically, not only the
number k∗max and the kgp-triples

{d∗(j), g∗(j), p∗(j)}, j ∈ N , (12)

are assumed to be available, but also the sets

N∗k = { j ∈ N : d∗(j) = k}, k = 0, 1, . . . , k∗max. (13)

All these sets can be generated for a given tree in a linear time of the number of nodes |N |.
We observe that, for any node j ∈ N , the inequality in line 9 of Algorithm 2 obviously

holds at each iteration k > d∗(j). Therefore, it is not necessary to check this inequality at
any of these iterations. Moreover, if the value of g∗(j) is available for a node j , it is natural
to skip the execution of lines 9–10 for this node at the iteration k = d∗(j).

For any node j ∈ N , we can avoid the unnecessary execution of these lines at iterations
k ≥ d∗(j) by excluding at iteration k = d∗(j) node j from all the sets i+ such that i ∈ j−.
This is the key observation which allows us to efficiently exploit the available least-hops
cheapest path tree. It is implemented in the following algorithm.

123

J Glob Optim (2010) 48:511–531 525

Algorithm 3.
1 for each i ∈ N \ {s} do
2 g(i)←+∞
3 V0 ← ∅
4 for k = 0, 1, . . . , k∗max − 1 do
5 for each j ∈ N∗k do
6 for each i ∈ j− do
7 i+ ← i+ \ { j}
8 Vk+1 ← ∅
9 for each i ∈ Vk do
10 for each j ∈ i+ do
11 if gk−1(i)+ ci j < g(j) then
12 g(j)← gk−1(i)+ ci j , p(j)← i , Vk+1 ← Vk+1 ∪ { j}
13 for each j ∈ Vk+1 do
14 gk(j)← g(j), pk(j)← p(j)
15 Vk+1 ← Vk+1 ∪ N∗k

Before this algorithm is executed, the sets N∗k and a least-hops cheapest path tree must be
determined.

The main properties of Algorithm 3 can be summarized in the same way as it has been
done in Theorem 2 for Algorithm 2. We skip it, because the difference in their formulations
and proofs are pretty obvious. It can be easily seen also that the total number of elementary
operations is less for Algorithm 3 than for Algorithm 2. This derives from the fact that i+
in the set of edges associated with the for loops in lines 6–7 and 10–12 of Algorithm 3 is a
subset of the set of edges which are used at the same iteration of Algorithm 2.

Line 7 of Algorithm 3 is equivalent to the exclusion of the edge (i, j) from the set Ē .
Since this operation is done at most once for each edge, the computational burden associated
with lines 5–7 grows linearly with the number of edges |Ē |.

If in our UV applications the terrain topology is not too complicated, the corresponding
AHOP problem may admit a trivial solution. In this case, at each iteration of Algorithm 3
we have i+ = ∅ in line 7, Vk+1 = ∅ in line 13, and Vk+1 = N∗k in line 15. It is the most
favorable case for Algorithm 3, because the total number of elementary operations associated
with lines 8–15 grows linearly with |N |.

In general, the smaller the difference is between the node distances d∗k (j) and dk(j), the
lower the computational burden of Algorithm 3.

6 Implementation issues and numerical experiments

Here we consider test problems originating from optimal placement of UAV-based commu-
nications relay nodes. Such problems are characterized by relation (7). Another feature of
these problems is that the edge costs are non-negative.

Our test problems cover various 3D terrain topologies. Each row in Table 1 refers to
one test case. The first five columns present some features of the generated directed graph
Ḡ = (N , Ē). Column ‘outdegree’ specifies the min/max/average node outdegree.

In column ‘%kgp > 1’, the percentage of nodes j with d∗(j) > d(j) is indicated. Such
nodes have more than one kgp-triple. Zero value means that the corresponding test problem
admits a trivial solution. To increase the portion of nodes with d∗(j) > d(j), we modified
some of the test problems by artificially increasing f (x(i)) for one arbitrary selected node i

123

526 J Glob Optim (2010) 48:511–531

Ta
bl

e
1

G
ra

ph
ch

ar
ac

te
ri

st
ic

s
an

d
ru

n
tim

e
in

m
ill

is
ec

on
ds

|N
|

|Ē
|

O
ut

de
gr

ee
k∗ m

ax
%

kg
p

>
1

A
lg

1′
A

lg
2

A
lg

3′
D

ijk
st

ra
3′

D
P

74
2

31
,9

38
1/

68
/4

3
16

52
.2

35
3.

5
0.

01
3

0.
04

1
0.

05
4

76
3

3,
86

6
2/

6/
5

20
16

.4
9

0.
3

0.
00

4
0.

00
9

0.
01

5

1,
39

5
7,

16
6

3/
6/

5
35

18
.4

35
0.

5
0.

01
8

0.
02

1
0.

04
2

1,
65

4
33

,3
40

5/
24

/2
0

27
68

.4
69

4.
3

1.
15

2
0.

69
5

1.
84

9

1,
65

4
33

,3
40

5/
24

/2
0

24
68

.4
74

4.
2

1.
16

3
0.

11
7

1.
28

0

1,
99

3
10

,2
72

2/
6/

5
33

35
.2

45
1.

0
0.

03
5

0.
04

7
0.

08
6

3,
41

1
12

2,
24

6
9/

48
/3

5
19

74
.3

17
5

15
.7

6.
9

3.
3

10
.2

5,
29

4
1,

13
4,

63
4

3/
31

6/
21

4
13

2.
1

1,
05

3
42

.0
17

.6
23

.4
35

.9

*5
,2

94
1,

13
4,

63
4

3/
31

6/
21

4
13

30
.6

1,
17

8
65

.2
44

.9
23

.4
68

.3

5,
29

4
1,

13
6,

12
8

3/
31

6/
21

4
14

0
1,

11
7

40
.8

12
.3

16
.9

29
.2

*5
,2

94
1,

13
6,

12
8

3/
31

6/
21

4
14

2.
1

1,
12

0
46

.9
12

.5
17

.4
29

.9

5,
80

4
62

4,
38

6
20

/1
73

/1
08

19
0.

2
82

3
24

.3
6.

8
10

.1
16

.9

*5
,8

04
62

4,
38

6
20

/1
73

/1
08

19
3.

1
87

8
34

.5
6.

7
10

.1
17

.1

7,
11

7
1,

62
5,

73
6

3/
31

6/
22

8
15

0
1,

73
6

58
.3

17
.9

25
.1

43
.0

*7
,1

17
1,

62
5,

73
6

3/
31

6/
22

8
15

3.
3

1,
75

6
87

.9
18

.7
33

.8
52

.5

9,
22

6
5,

19
0,

97
6

71
/9

65
/5

63
10

22
.0

3,
84

5
25

2.
3

17
0.

3
10

7.
1

27
8.

2

*9
,2

26
5,

19
0,

97
6

71
/9

65
/5

63
10

43
.5

3,
85

3
36

6.
3

41
0.

7
82

.4
49

3.
2

9,
22

6
23

,0
86

,1
52

22
8/

47
93

/2
50

2
5

6.
8

10
,1

99
88

2.
4

43
9.

7
32

6.
1

76
5.

1

*9
,2

26
23

,0
86

,1
52

22
8/

47
93

/2
50

2
5

24
.3

10
,2

99
1,

07
6.

6
41

4.
1

32
8.

9
74

3.
0

15
,1

05
6,

31
1,

32
2

52
/5

60
/4

18
13

0
6,

22
8

22
5.

9
81

.5
97

.1
17

9.
9

*1
5,

10
5

6,
31

1,
32

2
52

/5
60

/4
18

13
2.

3
6,

22
0

20
2.

8
81

.5
97

.3
18

0.
0

15
,1

05
6,

31
1,

32
2

52
/5

60
/4

18
14

0
6,

86
6

22
6.

4
81

.4
13

0.
9

21
3.

7

*1
5,

10
5

6,
31

1,
32

2
52

/5
60

/4
18

14
2.

4
6,

75
6

27
4.

8
83

.0
98

.4
18

2.
7

18
,8

01
13

,2
25

,2
74

11
4/

11
34

/7
03

13
0.

2
12

,5
95

48
0.

9
16

4.
9

19
5.

7
36

2.
8

*1
8,

80
1

13
,2

25
,2

74
11

4/
11

34
/7

03
13

1.
3

12
,4

30
51

8.
1

16
5.

9
19

6.
6

36
4.

7

38
,5

42
28

,3
27

,2
14

64
/1

19
8/

73
5

17
0.

1
36

,3
54

1,
06

0.
4

38
0.

4
58

0.
9

96
8.

0

*3
8,

54
2

28
,3

27
,2

14
64

/1
19

8/
73

5
17

2.
3

35
,1

11
1,

41
2.

9
30

1.
5

43
6.

0
82

4.
0

123

J Glob Optim (2010) 48:511–531 527

which was a successor of node s in the original cheapest path tree. The artificially modified
problems are marked by star in the first column of Table 1.

One can see that the number of discretization points varies from medium to very large. In
the largest test problem, the area of interest is of the size 1000× 1000× 60 m, the discreti-
zation step is 10 m, and the communication radius r = 100 m. The obstacles in this problem
model an urban environment.

In the previous section, it was mentioned that Algorithm 1 can be terminated after iteration
k = k∗max. Since the value of k∗max is not available, one can terminate Algorithm 1 as soon as

gk(j) = gk−1(j), ∀ j ∈ N ,

results from iteration k.
This idea is widely used in implementations of the Bellman-Ford algorithm. Here it was

implemented by setting f lag← true at the very beginning of iteration k, and if the inequal-
ity in line 9 of Algorithm 1 holds at least once, we set f lag← f alse. Then the for loop in
lines 4–10 is terminated as soon as f lag = true at the very end of iteration k. We shall refer
to this modification as Algorithm 1′.

This simple idea provides a speedup factor of about |N |/k∗max, which is approximately
103 in the largest of the test examples considered below. Due to (7), the speedup factor grows
linearly with |N |. One should bear this in mind, when we compare our Algorithms 2 and
3 with Algorithm 1′, which is actually the conventional Bellman-Ford algorithm tailored to
solving our UV-related problems.

We were using C++ for implementing our algorithms. Algorithm 2 was implemented
with no change.

Our implementation of Algorithm 3 was based on the following observation. One can skip
the for loop in lines 5–7 of Algorithm 3 if line 10 is changed as follows

10 for each j ∈ i+ such that d∗(j) > k do

We shall refer to this implementation as Algorithm 3′. More sophisticated implementations
of our algorithms and their detailed comparison will be the main subject of a separate paper.

Algorithm 3′ requires that k∗max and the part of kgp-triples presented by (12) are avail-
able. They are produced by Dijkstra’s algorithm modified in the way outlined in the previous
section. Dijkstra’s algorithm was implemented with the use of the standard heap algorithms
available in the C++ template library.

The sets N∗k (13) are also required to be available for Algorithm 3′. They are produced
at the preprocessing stage by sorting the nodes j ∈ N in the increasing order of d∗(j) with
subsequent identification of the segments N∗1 , N∗2 , . . . in the obtained sequence of sorted
nodes.

The numerical results presented here were produced on a PC running under Windows
Vista with an Intel Core 2 Duo processor (2.4 GHz, 2 GB RAM). Only one core was involved
in the computational process. The CPU time was measured in milliseconds averaged over
1,000 runs. We used the O2 optimization flag in the Microsoft Visual Studio 2008 C++
compiler.

The CPU time of running Algorithms 1′, 2, 3′ and Dijkstra’s algorithm are presented by
the corresponding columns in Table 1. We shall refer to the combination of Algorithm 3′,
Dijkstra’s and preprocessing algorithms as the combined Algorithm 3′. The run time of the
preprocessing algorithm is not reported here because it was less than 1% of the run time of
the combined Algorithm 3′ presented by the last column.

Table 1 allows us to compare the run time of Algorithms 2 and the combined Algo-
rithm 3′ versus the run time of Algorithms 1′. One can see that the speedup factor of

123

528 J Glob Optim (2010) 48:511–531

Algorithm 2 ranges from 10 to 63. The combined Algorithm 3′ is, in general, faster than
Algorithm 2, especially in the cases of large scale problems. The combined Algorithm 3′ pro-
vides a speedup with the factor ranging from 10 to a few hundreds. It should be emphasized
that the run time of this combination is, in the most cases, less than twice the time of running
Dijkstra’s algorithm. The results presented by Table 1 show the high efficiency of the new
algorithms.

7 Conclusions and future work

The two main results of this paper are the following.
First, the multiextremal problem (1–2), for which it is intractable to directly calculate any

optimal solution, has been reduced to an easy-to-solve cheapest path problem, which yields
a reasonably accurate global optimum for a properly refined discretization. The practical
importance of this approach is that the major computational burden falls on the presolving
stage, owing to which a real-time decision on the optimal placement of the relay nodes can
be made almost immediately after the target position becomes available.

Second, new algorithms for finding hop-restricted cheapest paths have been developed.
The important property of these algorithms is that for each possible target position they pro-
duce a Pareto solution. It is an optimal solution to the multi-criteria problem of minimizing
the path cost and the number of hops. The practical efficiency of our algorithms originates
from their ability to take into account some peculiarities of the considered UVs placement
problem. Our numerical experiments show that the new algorithms are reasonably fast in
solving the single source restricted cheapest path problem AHOP. Their computational time
is a small multiple of the time required by Dijkstra’s algorithm to solve the single source
unrestricted cheapest path problem. The new algorithms are superior to the conventional
Bellman-Ford algorithm tailored to solving AHOP problems.

As an alternative approach, we develop separately a dual ascent algorithm. It is applied
to finding a restricted cheapest path for given initial and terminal nodes. It is based on the
Lagrangian relaxation of the constraint which limits the number of hops. Preliminary results
are encouraging. They are reported in [10].

We plan to extend our approach to the case of nonuniform UVs with an individual range
of the communication equipment. In this case the inequality constraints in (2) take the form

‖xi−1 − xi‖ ≤ ri , ‖xi+1 − xi‖ ≤ ri .

The approach presented in this paper can be easily modified if it is necessary to incorpo-
rate some other type of constraints of practical importance. For instance, the visibility graph
can take into account the presence of areas where any placement of autonomous vehicles
is prohibited, while intersections of the communication lines with such areas are admitted.
Moreover, the extra requirement, that the autonomous vehicles can not be placed too close
to each other, can also without difficulty be taken into account in the process of generating
the visibility graph.

If it is required to avoid any placement of UVs too close to obstacles, this can be imple-
mented, for instance, by introducing weights in computing the obstructed volume. Those
parts of the ball which are more close to its center should have higher weights. Alternatively,
one can add to the standard obstructed volume a term which somehow penalizes the presence
of obstacles in the immediate vicinity of the UV.

123

J Glob Optim (2010) 48:511–531 529

Note that our approach can be evidently extended to the case where each term of the
objective function in (2) depends not only on xi , but also on the position of the previous point
in the sequence of relay nodes. This refers to the objective function of the form:

k+1∑

i=1

f (xi−1, xi), (14)

for which the edge cost can be defined as ci j = f (x(i), x(j)).
For UV applications, we plan to consider objective functions of a more general type. The

objective functions of the form presented by (14) provide a possibility of assessing not only
the UV positions, but also the communication and surveillance quality.

Our intention is also to address the optimal placement of communications relay nodes in
the case of multiple targets and restricted number of UVs. We plan to consider both static
and dynamic settings.

It should be emphasized that there are some other applied problems, different from those
considered here, which could gain from applying our approach either directly or in a modified
form. These problems are characterized by the necessity to restrict the number of turns in
optimal piecewise linear paths [37]. One can find such problems, for instance, in automated
VLSI circuit design [26,38] and in robotic motion planning [13,24].

In the network design and related areas, it is sometimes required to solve hop-constrained
cheapest path problems. Lawler’s successive approximation algorithm [25] or its truncated
version is often used for this purpose (see, e.g., [5,23,33]). Our new algorithms are much
faster than Algorithm 1′ which is actually an improved version of Lawler’s algorithm. They
provide a speedup factor of about 40 in the large scale cases. All this allows us to conclude
that our algorithms can be successively used for solving the mentioned problems.

Acknowledgments This work is partially supported by grants from LinkLab (www.linklab.se), the ELLIIT
network organization for Information and Communication Technology, the CENIIT Center for Industrial
Information Technology (06.09), the Swedish Research Council (VR, 2009-3857), the CADICS Linnaeus
Center for Control, Autonomy, and Decision-making in Complex Systems funded by the Swedish Research
Council (VR), and the MOVIII Strategic Research Center funded by the Swedish Foundation for Strategic
Research (SSF).

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-
Hall, Englewood Cliffs, NJ (1993)

2. Anderson, S.O., Simmons, R., Goldberg, D.: Maintaining line of sight communications network between
planetary rovers. In: Proceedings of the 2003 IEEE/RSJ International Conference of Intelligent Robots
and Systems, pp. 2266–2272. IEEE (2003)

3. Anisi, D.A., Ögren, P., Hu, X.: Communication constrained multi-UGV surveillance. In: Proceedings of
the 17th IFAC World Congress, Seoul, South Korea, 6–11 July 2008

4. Arkin, R.C., Diaz, J.: Line-of-sight constrained exploration for reactive multiagent robotic teams. In: 7th
International Workshop on Advanced Motion Control, pp. 455–461 (2002)

5. Balakrishnan, A., Altinkemer, K.: Using a hop-constrained model to generate alternative communication
network design. ORSA J. Comput. 4(2), 192–205 (1992)

6. Bellman, R.: On a routing problem. Q. Appl. Math. 16(1), 87–90 (1958)
7. Ben-Moshe, B., Carmi, P., Katz, M.J.: Approximating the visible region of a point on a terrain. GeoIn-

formatica 12(1), 21–36 (2008)
8. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA (1995)
9. Bertsekas, D.P.: Network Optimization: Continuous and Discrete Models. Athena Scientific, Belmont,

MA (1998)

123

www.linklab.se

530 J Glob Optim (2010) 48:511–531

10. Burdakov, O., Holmberg, K., Olsson, P.-M.: A dual ascent method for the hop-constrained shortest path
problem with application to positioning of unmanned aerial vehicles. Technical Report LiTH-MAT-R-
2008-07, Department of Mathematics, Linköping University (2008)

11. Burdakov, O., Doherty, P., Holmberg, K., Kvarnström, J., Olsson, P.-M.: Positioning unmanned aerial
vehicles as communication relays for surveillance tasks. In: Proceedings of Robotics: Science and Sys-
tems, Seattle, USA (2009)

12. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: theory and experimental evalu-
ation. Math. Program. 73(2), 129–174 (1996)

13. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles
of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge, MA (2005)

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT
Press/McGraw-Hill, Cambridge/New York (2001)

15. De Floriani, L., Magillo, P.: Algorithms for visibility computation on terrains: a survey. Environ. Plann.
B Plann. Des. 30(5), 709–728 (2003)

16. Doherty, P.: Advanced research with autonomous unmanned aerial vehicles. In: Proceedings on the 9th
International Conference on Principles of Knowledge Representation and Reasoning (2004)

17. Doherty, P., Rudol, P.: A UAV search and rescue scenario with human body detection and geolocalization.
In: 20th Australian Joint Conference on Artificial Intelligence (AI07) (2007)

18. Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithms for the weight-
constrained shortest path problem. Networks 42(3), 135–153 (2003)

19. Dynia, M., Kutylowski, J., auf der Heide, F.M., Schrieb, J.: Local strategies for maintaining a chain of
relay stations between an explorer and a base station. In: SPAA ’07: Proceedings of the Nineteenth Annual
ACM Symposium on Parallel Algorithms and Architectures, pp. 260–269. ACM Press, New York, USA,
1 Jan 2007

20. Ford, L.R. Jr., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton, NJ (1962)
21. Fridman, A., Modi, J., Weber, S., Kam, M.: Communication-based motion planning. In: Proceedings of

41st Annual Conference on Information Sciences and Systems, pp. 382–387. IEEE (2007)
22. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cambridge, MA (2007)
23. Guérin, R., Orda, A.: Computing shortest paths for any number of hops. IEEE/ACM Trans.

Netw. 10(5), 613–620 (2002)
24. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge, MA (2006)
25. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New

York (1976)
26. Leighton, F.T., Rosenberg, A.L.: Three-dimensional circuit layouts. SIAM J. Comput. 15(3), 793–

813 (1986)
27. Moitra, A., Mattheyses, R.M., DiDomizio, V.A., Hoebel, L.J., Szczerba, R.J., Yamrom, B.: Multivehicle

reconnaissance route and sensor planning. IEEE Trans. Aerosp. Electron. Syst. 39(3), 799–812 (2003)
28. Nagy, G.: Terrain visibility. Comput. Graph. 18(6), 763–773 (1994)
29. Obermeyer, K.J.: The VisiLibity library. http://www.VisiLibity.org (2008)
30. Pereira, G.A.S., Das, A.K., Kumar, V., Campos, M.F.M.: Decentralized motion planning for multiple

robots subject to sensing and communication constraints. In: Proceedings of the Second Multi-Robot
Systems Workshop, pp. 267–278. Kluwer Academic Press (2003)

31. Pezeshkian, N., Nguyen, H.G., Burmeister, A.: Unmanned ground vehicle radio relay deployment system
for non-line-of-sight operations. In: Proceedings of IASTED International Conference on Robotics and
Applications. ACTA Press (2007)

32. Pinkney, M.F.J., Hampel, D., DiPierro, S.: Unmanned aerial vehicle (uav) communications relay. In:
Military Communications Conference MILCOM’96, vol. 1, pp. 45–51. IEEE (1996)

33. Pirkul, H., Soni, S.: New formulations and solution procedures for the hop constrained network design
problem. Eur. J. Oper. Res. 148(1), 126–140 (2003)

34. Schouwenaars, T., Stubbs, A., Paduano, J., Feron, E.: Multivehicle path planning for nonline-of-sight
communication. J. Field Rob. 23(3–4), 269–290 (2006)

35. Sridharan, K., Priya, T.K.: A hardware accelerator and fpga realization for reduced visibility graph con-
struction using efficient bit representations. IEEE Trans. Ind. Electron. 54(3), 1800–1804 (2007)

36. Stewart, A.J.: Fast horizon computation at all points of a terrain with visibility and shading applica-
tions. IEEE Trans. Vis. Comput. Graph. 4(1), 82–93 (1998)

37. Szczerba, R.J., Chen, D.Z., Klenk, K.S.: Minimum turns/shortest path problems: a framed-subspace
approach. In: Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernet-
ics, vol. 1, pp. 398–403. IEEE (1997)

38. Szeszler, D.: Combinatorial algorithms in VLSI routing. PhD thesis, Budapest University of Technology
and Economics (2005)

123

http://www.VisiLibity.org

J Glob Optim (2010) 48:511–531 531

39. Tandy, C.R.V.: The isovist method of landscape survey. In: Murray, H.C. (ed.) Symposium on Methods
of Landscape Analysis, pp. 9–10. Landscape Research Group, London (1967)

40. Turner, A., Doxa, M., O’Sullivan, D., Penn, A.: From isovists to visibility graphs: a methodology for the
analysis of architectural space. Environ. Plann. B Plann. Des. 28, 103–121 (2001)

123

	Optimal placement of UV-based communications relay nodes
	Abstract
	1 Introduction
	2 Use of obstructed volume for assessing UAV position
	3 Spatial discretization and network formulation
	4 Restricted number of relay nodes
	5 AHOP algorithms
	6 Implementation issues and numerical experiments
	7 Conclusions and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

